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INTRODUCTION 

From many field observations, it has become well known that pancake ice is 
ubiquitous in a wave dominated sea. These strikingly uniform circular floes are 
consistently found in Antarctic seas during the ice formation season (Wadhams, 1991). 
Pancake ice forms through a combination of thermodynamic growth and mechanical 
thickening, caused by rafting of floes driven by wave motion. This complex growth 
process is much faster than pure thermodynamic growth and hence may be the main 
factor responsible for ice edge advance in marginal ice zones. In this paper we present a 
three-dimensional  computer model of pancake ice in a plane wave field. The model uses 
circular disk-shaped floes in a newly developed discrete element technique (Hopkins and 
Tuhkuri, 1999). The floes are subject to water drag, added mass, gravity, and buoyancy 
forces. Buoyancy forces for each floe are calculated at each time step from a surface 
integral. We place a vertical barrier at the end of the simulation domain to represent land 
fast ice without wave reflection. A drift velocity imparted to the floes by the waves causes 
the floes to accumulate at the barrier. We calculate the force on the barrier as a function 
of time and wave amplitude.  

DESCRIPTION OF THE COMPUTER MODEL 

The computer model of pancake ice/wave interaction is based on a new three-
dimensional discrete element model. A discrete element model is a computer program 
that explicitly simulates the dynamics of a system of discrete particles. Here the particles 
are the individual ice floes. The position, orientation, velocity, and shape of each floe are 
stored in arrays.  At each time step, the contact and body forces on each floe are 
calculated and the floes are moved to new locations with new velocities that depend on 
the resultant of the forces. The summary presented here is from Hopkins and Tuhkuri 
(1999). 

The ice floes in the simulations are flat disks with a circular edge as shown in Figure 
1. The floes are formed by dilating a flat disk of radius R1 by a sphere with radius R2. In 
the dilation process in mathematical morphology (Serra, 1986) the two-dimensional 
circular disk is transformed into a three-dimensional disk with thickness h = 2R2 and 
diameter d = 2(R1+R2) by placing a sphere with radius R2 at every point on the two-
dimensional circular disk. The aspect ratio of the floe d/h can be varied by changing R1 
and R2. The top and bottom surfaces of the floes are flat.  
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Wherever two floes touch, the overlap 
is interpreted as a deformation of the floes 
resulting in a contact force.  The contact 
force has components normal and tangential 
to the surfaces at the point of contact.  The 
normal axis �n  is perpendicular to the 
surface of each floe. The tangential axis 

�

t  
is in the direction of the tangential 
component of the relative velocity at the 
point of contact.  The normal component of the contact force is 
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The subscript n denotes the normal direction, the superscript n denotes the current time 
step, kne is the normal contact stiffness, δ is the depth of overlap between the floes, knv is 
the normal contact viscosity, equivalent to a coefficient of restitution, and 

�

V1 2/  is the 
relative velocity of floe 1 with respect to floe 2 at the point of contact. A value of knv near 
critical damping is used to produce highly inelastic behavior. Tensile forces are not 
modeled. The incremental change in the tangential force due to friction is proportional to 
the relative tangential velocity. The tangential force at time n is  
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where ∆t is the time step and kte is the tangential contact stiffness that is set to 60% of kne. 
The magnitude of kte affects the rate at which the frictional force increases to the 
Coulomb limit µFn, where µ is the friction coefficient. If the tangential force Ft exceeds 
the Coulomb limit, the x, y, and z components of Ft are scaled such that |Ft| = µFn. The 
torques on each floe are calculated from the forces and moment arms. The water drag 
force Fd on a floe is given by  
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where Cd is the drag coefficient, 
�

Vw  is the water velocity, ρw is the water density, and 
A=π(R1+R2)2 is the floe area. The drag force is separated into components normal and 
tangential to the flat surface of a floe. The drag coefficient Cd, used in the simulations, 
was 0.6 for flow normal to the flat surface and 0.06 for flow tangential to the flat surface. 
The x and z components of the water velocity Uw  and Vw  at the floe position x are  
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where H is the wave height, k L= 2π / is the wavenumber, and ω = gk . Rotational 
drag Md on a floe is given by 
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Figure 1. Contact between two floes, 
characteristic of floe rafting (Hopkins and 
Tuhkuri, 1999). 



 

 

 

The three components of the rotational drag are calculated in the body coordinate frame 
of the floe. The rotational drag coefficient Cd, used in the simulations, was 0.6 for 
rotation about the x and y body axes (in the plane of the floe) and 0.06 for rotation about 
the z body axis (normal to the floe). Water drag was applied only to the underwater floes 
that were in an exposed position. No drag  was applied to floes in the interior of a mass of 
floes. Added mass was included by multiplying the floe mass by 1+Cm in the equations of 
motion. The value of the added mass coefficient used in the simulations was 0.15. 
Hydrodynamic lift was not modeled. 

The buoyant force and its moment on each floe was calculated by evaluating a 
numerical surface integral of the hydrostatic pressure on the floe. The hydrostatic pressure 
on a differential area element dP

�

 was given by  
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where �n is the outward normal to the differential element of area dA, η is the water 
surface elevation, and z is the elevation of the differential element. The equation for the 
water surface is 

η ω= −1
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Because it is impractical to calculate the surface integral for each floe at each time step, a 
look-up table was created. The components of the buoyancy force and moment were 
calculated for discrete values of 4 independent variables; the depth of the floe center 
below the actual water surface, the angle between the body z axis (floe normal) and the 
global z axis, the azimuthal angle formed by the projection of the the body z axis on the 
global xy plane and the global x axis, and finally the inclination angle of the wave surface. 
A quadri-variate interpolation scheme was used to interpolate between discrete functional 
values. 

After the sum of the forces and torques exerted on each floe have been calculated, 
the equations of motion for each floe are solved and time advanced. The translational 
equations of motion use simple central difference approximations. Changes in the angular 
velocities and orientation of the floes are much more complicated to calculate. We use a 
method developed by Walton and Braun (1993). Euler’s equations of motion for the time 
derivatives of the angular velocities in the principal body frame are solved using a 
predictor-corrector algorithm. Floe orientations are specified by quaternions. The updated 
quaternions are found by solving central-difference equations for the time derivatives of 
the quaternions, expressed in terms of the quaternions themselves and the angular 
velocities.  

In each simulation the change in the kinetic and potential energy of the floes, the 
energy dissipated by inelastic and frictional contacts and water drag, and the work done 
by the buoyant force are calculated at each time step. Inelastic and frictional dissipation 
are determined by computing the work performed by the normal and tangential 
components of each contact force. The energy balance is used to gauge numerical 
accuracy. In the simulations described below, the error in the energy balance was less 
than 2%. 



 

 

 

RESULTS OF THE SIMULATIONS 
A set of simulations was performed with the computer model to determine the rate of 

thickening of the ice accumulation in front of a vertical barrier placed at the end of the 
model domain. Each simulation began with a single layer of floes distributed uniformly 
over the water surface with an areal concentration of 50%. The waves moved in the 
longitudinal or x-direction toward the barrier. The lateral boundaries of the domain (y-
direction) were periodic. The z-axis was vertical. The parameters used in the simulations 
are listed in Table 1. 

Table 1. Parameters Used in the Simulations. 

Parameter Symbol Value 
Wave length L 100 m 
Wave height H 3,3.5,4,4.5,5 m 
Domain length  600 m 
Domain width  8.75 m 
Floe thickness h 167 mm 
Floe diameter d 1 m 
Ice density ρi 900 kg m-3 
Water density ρw 1010 kg m-3 
Normal contact stiffness kn 167 kN m-1 

Coefficient of restitution ε 0.25 
Floe surface friction  µµµµ 0.35 
 

The non-reflecting barrier, placed at the end of the domain, was intended to simulate 
land fast ice. The net drift of the floes created an accumulation in front of the barrier. As 
the accumulation grew, additional floes were added at the other end of the domain at a 
concentration of 50%. Figure 2a-d shows 4 successive snapshots of the ice accumulation 
in front of the barrier at 2 second intervals. The wave period 2πL g/  was 8 s. The 
thinning and thickening of the ice accumulation shown in the 4 snapshots shows the 
alternate longitudinal compression and dilatation produced by the passage of each wave. 
The series of snapshots in Figure 2 also shows the floe accumulation colliding with the 
barrier. As the floe accumulation thickens, the force on the barrier increases. The 
evolution of the force as a function of wave amplitude and time is shown in Figure 3. The 
rate of increase of the force as a function of wave amplitude is highly non-linear. The 
results for the case of H=3 m showed nearly zero force and no thickening. We expect the 
force on the barrier and the ice thickness to reach equilibrium together. In an attempt to 
reach an equilibrium state of constant force and thickness in the simulation, we 
concentrated on the H=3.5 m case in the hopes that it would have the smallest 
equilibrium thickness and thus require the least number of ice floes and the shortest 
computational time. As shown in the figure the force for H=3.5 m does indeed seem to 
have reached a sort of plateau, if not equilibrium, after a long period of steady increase. 



 

 

 

 

Figure 2a-d. Successive snapshots of the ice accumulation in front of the barrier: H= 3.5 m. The 
width of each figure is 62 m. 

 

 

 

 

 



 

 

 

Figure 3. Evolution of the force on the barrier as a function of wave amplitude and time. 

DISCUSSION 

From the results of this study, we believe that this computer model is capable of 
simulating the rafting process central to the formation of pancake ice. Due to its three-
dimensional nature and the realistic modeling of water-ice interaction and ice-ice 
interaction, it closely resembles the physical counterpart. We will use this simulation to 
determine the functional relation between the rafting thickness and the following 
parameters: wave amplitude, wavelength, floe diameter, floe thickness, and floe-floe 
friction. The thickness of the accumulation of rafted ice floe in front of the barrier is a 
function of the distance from the barrier. It appears that this thickness and the force 
exerted by the ice against the barrier approach a steady-state value. 

REFERENCES 

Hopkins, M.A., and J. Tuhkuri (1999). Compression of floating ice fields, 
J. Geophysical Research, 104, (C7), 15815-15825. 

Serra, J., Introduction to Mathematical Morphology, Computer Vision, Graphics, and 
Image Processing 35, 283-305, 1986. 

Wadhams, P. (1991) from Notes of IAPSO Workshop on Wave-Ice Interaction, Cambridge Dec. 
16-18, 1991. 

Walton, O.R. and R.L. Braun, Simulation of rotary-drum and repose tests for frictional 
spheres and rigid sphere clusters, Joint DOE/NSF Workshop On FLOW OF 
PARTICULATES AND FLUIDS, Sept. 29 - Oct. 1, 1993, Ithaca, NY. 

 

 


	Back to Index

